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Abstract

This paper examines a variant of the network loading problem, a network design problem found in the telecom-

munications industry. In this problem, facilities of fixed capacity must be installed on the edges of an undirected

network to carry the flow from a central vertex to a set of demand vertices. The objective is to minimize the total

installation costs. In this work, the nonbifurcated version of the problem is considered, where the demand at any given

vertex must be satisfied through a single path. The proposed heuristics alternate between a construction phase and a

local search phase. Each new construction phase, except the first one, is part of a diversification strategy aimed at

providing a new starting point for the following local search phase. Different diversification strategies are tested and

compared on large-scale instances with up to 500 vertices.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Network design models find applications in
various fields such as computer networks, trans-
portation, manufacturing and telecommunications
[1,11,22,24]. In this paper, we study a variant of the

network loading problem [21] where facilities of
fixed capacity must be installed on the edges of an
undirected network to carry the flow from a central
vertex to a set of demand vertices. The objective is
to minimize the total installation costs. In this
work, the nonbifurcated version of the problem is
considered, where the demand at any given vertex
must be satisfied through a single path. We assume
that a fixed and limited number of types of facilities
are available (the application considered has nine
types of facilities). Each type has some capacity
and installation cost. The latter increases with

European Journal of Operational Research 142 (2002) 231–241

www.elsevier.com/locate/dsw

*Corresponding author. Tel.: +1-514-343-7479; fax: +1-514-

343-7121.

E-mail address: bernard@crt.umontreal.ca (B. Gendron).

0377-2217/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0377-2217 (02 )00263-1

mail to: bernard@crt.umontreal.ca


capacity but with substantial economies of scale.
For example, if two types of facilities are available
with capacity 1 and C > 1, the cost of the second
facility would be significantly less than C times the
cost of the first facility. This problem is known to
be NP-hard, even if simple special cases are con-
sidered [19].

The literature on similar problems has mostly
focused on exact approaches based on mathe-
matical programming techniques, such as cutting
planes and Lagrangean relaxation [2,4,9,10,13,19–
21,25]. These approaches are restricted to in-
stances of relatively small size (typically, networks
with less than 50 vertices). Heuristic methods are
thus indicated to address realistic large-scale in-
stances.

In [3], a tabu search heuristic was proposed to
obtain good approximate solutions to this prob-
lem. The search was based on a 1-opt neighbor-
hood structure, where the path leading to a given
demand vertex in the current solution is replaced
by an alternative one. New starting points for the
tabu search were provided through a long term
adaptive memory scheme [27]. Although the tabu
search outperformed a local descent heuristic
based on a more complex 2-opt neighborhood
(where two paths associated with two different
demand vertices are replaced by two new paths),
the adaptive memory mechanism was not mea-
sured against alternative diversification strategies.
Previous studies have however shown that well
adapted diversification strategies are an essential
element in the development of efficient heuristic
approaches [18,29]. The objective of the present
paper is twofold: (1) to propose other diversifica-
tion approaches aimed at providing new starting
points for the local search and (2) to compare their
performance on large-scale telecommunications
instances with up to 500 vertices. We also investi-
gate the behavior of the proposed diversification
strategies when a 1-opt local descent is used in-
stead of the tabu search.

The paper is organized as follows. Section 2
presents a mathematical formulation of the
problem. In Section 3, the search framework is
presented. The two main components of this
framework, local search, and diversification, are
described in Sections 4 and 5, respectively. Finally,

in Section 6, computational results are reported on
typical telecommunications data.

2. Problem formulation

Let G ¼ ðV ;EÞ be an undirected graph where V
is the vertex set of cardinality n, E is the edge set of
cardinality m and D � V is the subset of demand
vertices of cardinality r. We further introduce the
following notation:

T set of facility types,
Pi set of paths from the central vertex to

demand vertex i,
di demand at vertex i,
ct cost of a facility of type t (per unit of

length),
wt capacity of a facility of type t,
le length of edge e,
ue initial capacity on edge e,
dej 1 if edge e is on path j, 0 otherwise.

We also introduce two sets of variables: the
variables xij which are equal to 1 if path j 2 Pi is
used to service demand vertex i; 0 otherwise; and
the design variables yte which are equal to the
number of facilities of type t installed on edge e.
The problem is then formulated as follows:

Minimize
X
e2E

X
t2T

lectyte

subject to

X
i2D

X
j2Pi

xijdej

 !
di 6 ue þ

X
t2T

wtyte 8e 2 E;

X
j2P

xij ¼ 1 8i 2 D;

xij 2 f0; 1g 8i 2 D; 8j 2 Pi;

yte integer 8t 2 T ; 8e 2 E:

In this model, the first set of constraints speci-
fies that there must be enough capacity on the
network to handle the flow on each edge. The
second set of constraints requires nonbifurcated
flows (i.e., a single path from the central vertex to

232 B. Gendron et al. / European Journal of Operational Research 142 (2002) 231–241



each demand vertex). The objective is to minimize
the installation cost of any additional capacity to
satisfy the demand at each vertex.

3. The algorithmic framework

The proposed heuristics alternate between a
construction and a local search phase. The first
solution is provided by a classical greedy con-
struction heuristic. Thereafter, the construction
phase is used for diversification purposes. In this
case, the information gathered during the search is
used to create a starting solution for the next local
search phase (see [5,23] for similar approaches
within the ant system framework).

The local search is an iterative neighborhood
search which is either a pure descent to the first
local optimum or a tabu search (TS). To avoid
cycling with TS, a short term memory, known as
the tabu list, stores previously visited solutions or
components of previously visited solutions. It is
then forbidden or tabu to come back to these so-
lutions for a certain number of iterations. The in-
terested reader is referred to [12] for details about
the tabu search heuristic.

The algorithmic framework of our heuristics is
sketched below.

1. while stopping criterion of main loop is not met do:
construction phase

a. if we are at the start of the algorithm then
generate an initial solution s with a con-
structive heuristic;
sbest  s;
otherwise
generate s with a diversification procedure;
local search phase

b. s�  s;
c. while stopping criterion of local search loop
is not met do:
generate a neighborhood of s and select
the best solution s0 in this neighborhood;
store information about s0 for use in the di-
versification procedure,
if indicated (see Section 5);
if s0 is better than s� then s�  s0;
s s0;

d. if s� is better than sbest then sbest  s0;
2. output sbest:

In this algorithm, variables s� and sbest corre-
spond to the best solution of the current local
search phase and the best overall solution, re-
spectively. The algorithm terminates when the to-
tal CPU time spent in the main loop exceeds some
value tmax. The stopping criterion of the local
search loop depends on the method, descent or TS.
When descent is used, the loop is stopped when s
does not improve over s�. In the case of TS, it is
stopped when the number of consecutive iterations
without improving s� has reached a user-supplied
value iter�.

In the following section, the neighborhood
structure used for the local search phase is pre-
sented. Then, Section 5 describes the construction
procedures used for initialization and diversifica-
tion purposes.

4. Local search phase

The local search is based on a 1-opt neighbor-
hood structure. Here, a new solution is obtained by
replacing the path leading to a given demand vertex
i by an alternative one. Each neighbor is evaluated
as follows. First, the flow on the selected path is
removed and the capacity on the corresponding
edges is reduced accordingly (with the flow on the
r 
 1 paths leading to the other demand vertices left
unchanged). Then, a least-cost, or shortest, path is
computed from the central vertex to the demand
vertex i, where the cost of each edge corresponds to
the installation cost of any additional capacity
needed to carry the flow di. Since there is a limited
number of facility types, it is easy to determine a
priori, even before the start of the algorithm, which
facilities must be installed for any flow between 0
and the total demand

Pr
i¼1 di (see Section 6.1).

Given this information and the flow on the r 
 1
remaining paths, one can then easily determine the
additional capacity cost for each edge.

If the least-cost path thus obtained is different
from the current one, it is the best alternative path.
Otherwise, a second shortest elementary (or loop-
less) path must be computed. Polynomial-time
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exact algorithms are reported in the literature for
this problem [14]. However, a heuristic approach
based on a simple adaptation of Dijkstra’s algo-
rithm [6] is indicated in our context, given that the
latter is particularly efficient on sparse networks
[28], which are typical in telecommunications ap-
plications.

In our adaptation, the scalar label associated
with every vertex is replaced by a vector of size 2
whose pth element is an upper bound on the length
of the pth shortest path to that vertex. The method
proceeds similarly as in Dijkstra’s algorithm, by
selecting first the vertex with the smallest label and
by updating the labels of its adjacent vertices. This
label setting strategy is modified in a simple way to
forbid paths with cycles. Once the vertex with
minimum temporary label is chosen, any adjacent
vertex already found on the tentative path is
excluded from further consideration. Clearly,
this approach always generates elementary paths.
However, it does not necessarily produce the sec-
ond shortest path, as some paths may be over-
looked. It thus constitutes a heuristic approach to
the 2-shortest path problem. The complexity of
the current implementation of this method is
Oðm log nÞ, where n is the number of vertices and m
is the number of edges. A more detailed descrip-
tion of this procedure is found in [3].

In spite of the efficiency of this method, the
exploration of the entire 1-opt neighborhood re-
mains computationally expensive. Thus, instead of
computing the best 1-opt move for each demand
vertex, only dpct1 � re demand vertices are con-
sidered, where pct1 is a user-supplied parameter.

Both the descent and TS share the same 1-opt
neighborhood structure. In the case of TS, how-
ever, a tabu list is used to further restrict the subset
of demand vertices to which a 1-opt move is ap-
plied. At every iteration, the demand vertex asso-
ciated with the best move is declared tabu for a
number of iterations randomly chosen in the in-
terval ½tabumin; tabumax�. Hence, the path leading to
that vertex cannot be changed for that number of
iterations. By associating a tabu status with the
vertices rather than the paths themselves, a more
restrictive approach is favored, thus reducing the
risks of cycling. However, a tabu move may still be
applied if it produces a solution which is better

than the best one obtained thus far (which is the
usual aspiration criterion).

5. Construction phase

During the construction phase, a new solution is
obtained with one of the two following approaches:

• Sequence independent construction (SI): For
each demand vertex i, this approach identifies
one path to carry the flow from the central ver-
tex to i. The order in which demand vertices are
considered does not influence the determination
of these paths, which are simply combined to
obtain a solution.

• Sequence dependent construction (SD): A solu-
tion is incrementally constructed by considering
the demand vertices in some predefined order.
The least-cost path to the current demand vertex
is computed, based on the flows and capacities
already installed for the previous demand verti-
ces.

In the following subsections, these two meth-
odologies are used to generate new starting solu-
tions for the local search. In Section 5.1, the
construction of the first starting solution is pre-
sented. Then, Section 5.2 describes four diversifi-
cation strategies aimed at periodically restarting
the search process.

5.1. Initialization

An example of an SI procedure is the initializa-
tion approach implemented in [3], which consists in
selecting the shortest paths, with respect to the edge
lengths, from the central vertex to each demand
vertex. This procedure suffers from a serious draw-
back since, even if it may find the best path to reach
each vertex individually, the solution obtained will
typically be quite far from the optimum, as many
paths are likely to share common edges. Conse-
quently, we implement an initialization procedure
that exploits the SD methodology. Here, the de-
mand vertices are sorted in non increasing order
of demand. This order is motivated by the cost
structure, which suggests that substantial econo-
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mies of scale can be achieved if higher capacity fa-
cilities are installed first. In this way, it is expected
that smaller demand vertices will be connected for
‘‘free’’, by exploiting the unused portion of the in-
stalled capacity on the network. It is important to
note that the edge costs are adjusted at each itera-
tion of the SD procedure, since the paths chosen for
the previous demand vertices determine what fa-
cilities should be installed to carry the flow to the
current demand vertex.

5.2. Diversification strategies

Four different diversification strategies will be
presented in the following. The first one is the
original method reported in [3]. The three others
are alternative approaches motivated by the SD
construction procedure.

5.2.1. Adaptive memory
The adaptive memory (AM) diversification

method, proposed in [3], is an example of an SI
procedure. Here, the adaptive memory is parti-
tioned into r compartments, one for each demand
vertex. A compartment stores different paths from
the central vertex to the associated demand vertex,
where the paths are collected from the best solu-
tions visited during the search. The ‘‘score’’ of a
path corresponds to the objective value of the best
solution containing that path. When a new current
solution is obtained by the local search, the paths
leading to each demand vertex are stored in their
corresponding compartment if: (1) the compart-
ment is not full or (2) the path is better than the
worst path in the compartment, in which case the
new path takes its place. To generate a new start-
ing solution, a path is taken from each compart-
ment through a probabilistic selection process. In
each compartment, the selection probability of a
path is proportional to its score. Consequently,
paths with better scores are more likely to be se-
lected. This biased selection process, which is also
used in Sections 5.2.2 and 5.2.4, is described in
detail in Appendix A.

5.2.2. Greedy multistart
The SD initialization procedure described in

Section 5.1 can be slightly modified to provide

different starting points during the search. For
example, instead of selecting the least-cost path
associated with the current vertex, a path could be
selected at random from a list of paths that are not
‘‘too far’’ from the best one (using, for example,
mechanisms found in greedy randomized adaptive
search procedures or GRASP [7,8,26]). A variant
of this idea, which is easier to implement, is to
randomize the selection of the next demand ver-
tex. That is, during the iterative SD construc-
tion procedure, the selection of the next vertex is
probabilistically biased towards those with higher
demands, using the procedure described in Ap-
pendix A.

We have implemented the latter idea within our
greedy multistart (GM) diversification strategy.
Starting from the best solution found during the
current local search phase, s�, a number of ran-
domly chosen paths are first removed from the
solution (i.e., the flows and capacities on the cor-
responding edges are reduced accordingly). In
the current implementation, dpctGM � re paths are
removed, where pctGM is a user-supplied parame-
ter. Then, the partial solution is reconstructed
through the SD greedy construction procedure,
where the choice of the next vertex, among those
which are not yet connected to the central vertex,
is probabilistically biased towards vertices with
higher demands. The solution obtained represents
the new starting point for the next local search
phase. This partial removal/reconstruction process
provides a means for perturbing s� while, at the
same time, preserving the general characteristics of
this solution. The fraction of the paths that are
removed represents a trade-off between the ex-
ploitation of good characteristics of s� and the
exploration of new solutions. At both extremes, s�

is kept as it is (total exploitation) or a new solu-
tion is reconstructed from scratch (total explora-
tion).

5.2.3. 2-Opt neighborhood (2N)
Starting from s�, the best solution obtained

during the current local search phase, a relatively
similar solution can be obtained through a 2-opt
move, where two paths associated with two de-
mand vertices i and j are replaced by two alter-
native paths, as in the following procedure:
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1. find the best alternative path to reach vertex i
and update the flows and capacities on the
edges accordingly;

2. find the best alternative path to reach vertex j
and update the flows and capacities accord-
ingly;

3. store the solution obtained in s1;
4. repeat steps 1 and 2 by interchanging vertices i

and j;
5. store the solution obtained in s2;
6. take the best solution between s1 and s2.

It is possible to explore the entire 2-opt neigh-
borhood of s�, obtained by considering all pairs of
demand vertices i and j. However, since our goal is
to perform diversification, only a small fraction
pct2N of the 2-opt neighborhood is considered,
where pct2N is a user-supplied parameter. Basically,
for each demand vertex, dpct2N � ðr 
 1Þe vertices
are chosen among the other vertices to form the
required pairs. A move is then performed by se-
lecting the best solution in this reduced neighbor-
hood. Although a single move could be done, it is
good practice to perform a fixed (usually small)
number iter2N of such 2-opt moves (each time ap-
plied to the solution obtained from the previous
move) to obtain a solution which is sufficiently
different from s�. It is worth noting that this 2-opt
neighborhood (2N) diversification strategy, com-
bined with the 1-opt local search, is reminiscent of
variable neighborhood search [15–17].

This diversification strategy could be extended
in a similar way to higher order k-opt neighbor-
hoods. However, preliminary experiments have
shown that even the evaluation of a very small
fraction of the 3-opt neighborhood is too time-
consuming with regard to its potential benefits.
These higher order neighborhoods can neverthe-
less be exploited with profit, as illustrated in the
following subsection.

5.2.4. Greedy k-opt (Gk)
The idea of using general k-opt moves is inter-

esting, especially if only one such move is per-
formed, as in the following procedure:

1. choose a value for k in the interval ½dpct1Gk �
re; dpct2Gk � re�;

2. remove k randomly chosen paths from s� and
update the flows and capacities on the edges ac-
cordingly;

3. reinstall k alternative paths to form a complete
solution.

In this procedure, pct1Gk and pct2Gk are user-
defined parameters. In step 3, the SD construction
procedure is used, where the selection of the next
vertex (among those not yet connected to the
central vertex) is probabilistically biased towards
those with higher demands. Note that this proce-
dure, unlike the 2-opt move procedure described in
Section 5.2.3, makes no attempt at forbidding the
reconstruction of the same solution s�. This could
be easily fixed, but this situation is unlikely to
occur given the probabilistic order used during the
reconstruction. Furthermore, even if the same so-
lution is visited twice, the subsequent trajectories
are likely to be different, due to the randomization.

In its basic version, this greedy k-opt ðGkÞ
strategy involves the evaluation of a single move,
which identifies one neighbor of s�. However, it is
certainly possible (although computationally more
expensive) to consider a fixed, but relatively small,
number of k-opt neighbors of s�. Then, the search
could restart from the best solution among these
neighbors. It is even possible to go one step fur-
ther. A pool containing the best solutions gener-
ated in this way could be maintained. As the
search proceeds, this pool would typically contain
solutions obtained from previous diversification
steps. By using the best solution found in this pool
to restart the search (which is not necessarily the
best solution obtained from s�), the entire history
of the search, not only the recent one, would be
considered. This approach can be seen as a form of
adaptive memory [30], but restricted to diversifi-
cation moves. In the remainder, it is assumed that
the number of moves applied to s� and the size of
the pool are both equal to size, a user-supplied
parameter. Clearly, this does not need to be the
case in general, but this simplification has little
impact, if any, on the performance of the ap-
proach.

Precisely, the pool of elite solutions is managed
as follows. Initially, the pool is empty. At the first
diversification step, size new solutions are inserted
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in the pool, and the best one is selected and re-
moved from it to restart the search. At subsequent
diversification steps, the size new solutions pro-
duced with k-opt moves are merged with the size-1
solutions already in the pool, and only the size best
are kept. Then, the best one is selected and re-
moved from the pool to provide a new starting
point for the local search.

6. Computational results

The diversification strategies presented in the
previous section were tested and compared on
randomly generated telecommunications networks
with characteristics frequently observed in prac-
tice. Before reporting the numerical results, the
cost data and network topologies used in the ex-
periments are first introduced.

6.1. Cost data

The installation costs for the different types of
facilities come from a real-world application. Since
these costs are confidential, they are shown in ge-
neric form in Table 1. As observed in this table, it
is not always optimal to use the smallest single
facility which can carry the flow. For a flow of 100,
for example, it is better to use facilities 7 and 1
with a total capacity of 102 and a total cost of
3.58, rather than facility 8 with capacity 144 and a
cost of 4.37. This difficulty can be alleviated
through the following observations:

• except for facility 9, it is never profitable to use
the same facility twice (for example, installing

facility 1 twice provides 12 units of capacity,
while the same capacity is obtained at lower
cost using facility 2);

• facility 9 is mandatory for flows of 216 or more,
as it is less expensive than any other combina-
tion of smaller facilities.

The special structure of these costs can thus be
exploited to a priori determine the facilities to be
installed for any flow between 0 and the total de-
mand

Pr
i¼1 di:

• for flows over 216, facility 9 is installed as many
times as needed until a residual flow under 216
is obtained;

• for flows between 1 and 215, all possible combi-
nations of different facilities are considered (ex-
cept facility 9), and the combination of lowest
cost is kept.

6.2. Randomly generated networks

General undirected networks with n ¼ 200 and
500 vertices were randomly generated to test our
algorithms. These networks are sparse and quasi-
planar, like those found in practice, with edge
densities (i.e., fraction of all possible edges) vary-
ing between 1% and 10%. More precisely, four
types of networks were considered and 10 different
instances were generated for each type. The four
network types are the following:

• n ¼ 200, r ¼ 100 and edge density¼ 1%;
• n ¼ 200, r ¼ 100 and edge density¼ 10%;
• n ¼ 500, r ¼ 250 and edge density¼ 1%;
• n ¼ 500, r ¼ 250 and edge density¼ 10%.

A demand is thus associated with 50% of the
vertices. The demand vertices fall into three cate-
gories: category 1 with 10–20 units of demand;
category 2 with 40–60 units; category 3 with 80–
100 units. The demand vertices are evenly distrib-
uted among the three categories. The problems
come with some equipments already installed.
The total capacity of the network, which is the
sum of the capacities over all edges of the net-
work, is twice the total demand. This capacity is

Table 1

Facility types

Facility type Capacity Cost (per unit of length)

1 6 0.55

2 12 0.73

3 24 1.03

4 36 1.39

5 8 1.67

6 72 2.31

7 96 3.03

8 144 4.37

9 216 6.33
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then uniformly distributed over all edges, with
a random perturbation on each edge (i.e.,
�0–20%).

6.3. Experiments

Preliminary experiments were conducted to
determine appropriate parameter values for the
algorithms. Since our objective is to compare dif-
ferent diversification strategies, the parameter val-
ues for the local search phase were the same in all
experiments. Preliminary tests allowed us to iden-
tify the following values:

• fraction of 1-opt neighborhood at each descent
iteration, pct1 ¼ 25%;

• fraction of 1-opt neighborhood at each TS iter-
ation, pct1 ¼ 10%;

• tabu tenure: tabumin ¼ 5, tabumax ¼ 9;
• TS stopping criterion: maximum number of con-

secutive iterations without improvement, iter� ¼
10.

Note that the values of pct1 are different for
descent and TS. Although the two methods share
the same neighborhood structure, their search
mechanisms are different, and therefore, the ‘‘best’’
fraction of the neighborhood to be considered at
each iteration (pct1) may also differ significantly.
We comment further on this issue at the end of this
section.

These values are not necessarily ‘‘optimal’’ for
each diversification strategy, but they exhibit a
good overall performance and allow a fair com-
parison. Each diversification strategy has also been
calibrated. For our tests, the following parameter
values were used:

• AM
� compartment size: 10;

• GM
� fraction of paths removed, pctGM ¼ 20%;

• 2N
� fraction of neighborhood explored, pct2N ¼

0:5%;
� number of 2-opt iterations, iter2N ¼ 3;

• Gk

� k 2 ½dpctlGk � re; dpct2Gk � re� with pct1k ¼ 5%;
pct2k ¼ 20%;

� pool size, size ¼ 1, 10.

Our experiments were run on a 64-processor,
64-GB Sun Enterprise 10000, with each proces-
sor operating at 400 MHz. Because all heuristics
contain stochastic features, three runs of each
method were performed on each problem instance.
Tables 2 and 3 compare the results obtained with
the four diversification strategies on the four types
of networks. For 200-vertex instances, the total
CPU time was set to tmax¼ 1 hour, while for 500-
vertex, this value was increased to 2.5 hours. For
each diversification strategy, three measures, av-
eraged over the 10 corresponding instances and
the three individual runs, are reported: ZðsbestÞ, the
average value of the best solution found; iterdiv, the
average number of diversification steps and iterloc
the average number of local search iterations per-
formed between two diversification steps.

In addition to the four diversification strategies
presented in Section 5, the results of two other
approaches are reported: (1) a pure TS method,
with no diversification (‘‘TS’’), which is obtained
by setting iter� to a very large number and (2) Gk
with k fixed to 2 (‘‘G2’’). The G2 strategy was
introduced to better evaluate the impact of the k
value in Gk and also to provide a comparison with
2N, which exhibits a more ‘‘aggressive’’ approach
by selecting the best move in a fraction of the 2-opt
neighborhood (rather than choosing 2-opt moves
at random). Thus, a total of 15 different heuristics
are compared. In addition, Tables 2 and 3 show
the average value of the first starting solution
produced by the initialization procedure. Note
that each identifier XX–YY in these tables refers to
diversification strategy XX combined with local
search YY (either descent or TS).

A number of conclusions may be drawn from
these results:

• For a given amount of CPU time, it is often bet-
ter to restart more frequently with a good diver-
sification strategy, like Gk, and to optimize less
thoroughly using a simple descent (rather than
the opposite, that is, restart less frequently and
optimize more thoroughly with tabu search).
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• The 1-opt neighborhood is not ‘‘rich’’ enough,
on the long term, to identify improving solu-
tions. This observation is supported by the
values of iterloc observed for the best diversifica-
tion strategies: they tend towards the minimum
number of iterations performed during any sin-
gle local search phase, which, for TS, is equal to

iter� ¼ 10, and for descent, is equal to 1 (no im-
proving solution is found at the very first itera-
tion).

• The starting points provided by AM are not
very effective, given the relatively large number
of local search iterations ðiterlocÞ after each di-
versification step. This result was expected, since

Table 2

Results on networks with 200 vertices (total CPU time of 1 hour)

Heuristic Density¼ 1% Density¼ 10%
ZðsbestÞ iterdiv iterloc ZðsbestÞ iterdiv iterloc

Initialization 16,251 – – 11,146 – –

TS 15,910 1 45,208 10,896 1 31,219

AM-descent 15,917 1017 45 10,954 779 39

AM-TS 15,918 1449 77 10,933 1001 76

GM-descent 15,941 3897 11 10,966 2579 9

GM-TS 15,949 2912 37 10,956 1811 36

2N-descent 15,839 4753 4 10,879 2880 5

2N-TS 15,880 12,912 10 10,940 7879 10

G2-descent

(size¼ 1)
15,870 47,865 1 10,914 30,677 1

G2-TS (size¼ 1) 15,855 13,150 10 10,893 8213 10

G2-descent

(size¼ 10)
15,876 24,329 2 10,910 17,077 1

G2-TS (size¼ 10) 15,870 10,264 12 10,898 6622 11

Gk-descent

(size¼ 1)
15,800 16,786 3 10,851 10,871 3

Gk-TS (size¼ 1) 15,788 8397 15 10,889 5036 15

Gk-descent

(size¼ 10)
14,661 12,091 1 10,407 7918 1

Gk-TS (size¼ 10) 15,091 7082 10 10,639 4494 10

Table 3

Results on networks with 500 vertices (total CPU time of 2.5 hours)

Heuristic Density¼ 1% Density¼ 10%
ZðsbestÞ iterdiv iterloc ZðsbestÞ iterdiv iterloc

Initialization 43,492 – – 24,310 – –

TS 42,655 1 11,049 23,752 1 6018

AM-descent 42,994 101 109 23,928 57 96

AM-TS 42,835 169 163 23,845 88 157

GM-descent 42,944 437 30 23,970 150 35

GM-TS 42,857 396 82 23,885 131 101

2N-descent 42,651 384 4 23,724 157 5

2N-TS 42,756 3489 10 23,910 1482 10

G2-descent (size¼ 1) 42,670 13,871 1 23,826 6127 1

G2-TS (size¼ 1) 42,624 3671 10 23,823 1578 10

G2-descent (size¼ 10) 42,683 13,794 1 23,842 6092 1

G2-TS (size¼ 10) 42,630 3644 10 23,828 1563 10

Gk-descent (size¼ 1) 42,726 1995 7 23,736 610 10

Gk-TS (size¼ 1) 42,684 1262 27 23,694 386 38

Gk-descent (size¼ 10) 42,312 3093 2 23,606 1256 2

Gk-TS (size¼ 10) 42,463 1826 12 23,580 716 13
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AM is based on the SI construction approach,
where independently computed paths are merged
together to form a solution. Overall, the AM
approach outperforms only the GM strategy.

• Among all diversification strategies, GM is the
worst. It is also the only one which does not ex-
ploit the history of the search.

• The 2N-descent method is more effective than
the G2-descent variant. However, it is the oppo-
site when 2N is combined with TS. Since both
2N and G2 are based on the same 2-opt neigh-
borhood structure, it is beneficial when using de-
scent as the local search phase to spend some
additional effort to determine good starting
points through a partial exploration of the neigh-
borhood.When TS is used, this effect vanishes as
the latter is less sensitive to the starting point.

• The Gk diversification strategy is significantly
better than the others. In particular, Gk outper-
forms both 2N and G2, which are based on
2-opt neighborhoods. Clearly, general k-opt
moves differ more significantly than 2-opt moves
from the 1-opt moves used in the local search
phase, and provide new and better opportuni-
ties for diversification. It should also be noted
that, unlike G2, the Gk diversification strategy
is greatly improved when a pool of elite solu-
tions is used.

Note also that increasing the neighborhood size
to 25% for the XX-TS methods, as for the corre-
sponding XX-descent methods, does not provide
any improvement over the values reported in Ta-
bles 2 and 3. In fact, it is exactly the opposite. On
the 500-vertex problems with densities of 1% and
10%, for example, Gk-TS with a pool size of 10
produces average solution values of 42,544 and
23,636, respectively. The same degradation is ob-
served for the other methods based on TS, when
the neighborhood size is similarly increased. Thus,
increasing the neighborhood size is indicated only
if the search is performed in a restricted region of
the search space, as in pure descent methods.

In summary, the Gk diversification approach is
the most effective because it combines:

• complex moves based on large-scale neighbor-
hoods;

• the generation of multiple solutions at each di-
versification step;

• the exploitation of the entire history of the
search (not only the recent one), via a pool of
elite solutions generated by previous diversifica-
tion steps.

7. Conclusion

In this paper, new heuristics were reported for
the nonbifurcated version of the network loading
problem presented in [3]. These heuristics alternate
between a construction and a local search phase.
The construction phase is used to generate the
initial starting solution and to provide restart
points during the search process, for diversifica-
tion purposes. Four diversification strategies were
compared on large-scale instances with up to 500
vertices. The results indicate that the best diversi-
fication strategy combines three desirable features:
(1) it generates solutions that are significantly
different from those obtained during the local
search phase, due to a more complex neighbor-
hood structure, (2) it generates many different so-
lutions at each diversification step and (3) it keeps
track of the entire history of the search by main-
taining a pool of elite solutions produced by pre-
vious diversification steps.
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Appendix A

In this appendix, we describe how a random
selection of one element in a list of elements sorted
from best to worst is performed. The best element
gets value Max, while the worst gets value Min.
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The values associated with the other elements are
equally spaced between Min and Max. More pre-
cisely, assuming that we have d elements in the list
(with d > 1), the value Vi for the element of rank i is

vi ¼ Max
 ðMax
MinÞ � i
 1

d 
 1
; 16 i6 d:

The selection probability pi of the element of rank i
is then

pi ¼
viPd
j¼1 vj

; 16 i6 d:

Assuming thatMinþMax ¼ 2, the selection bias in
favor of the best elements can be increased by set-
ting the Max value closer to 2, or reduced by set-
ting its value closer to 1. In our implementations,
the values Min ¼ 0:5 and Max ¼ 1:5 were used.
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